Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern hemisphere columbids.

نویسندگان

  • Andrew E McKechnie
  • Maxine C Whitfield
  • Ben Smit
  • Alexander R Gerson
  • Eric Krabbe Smith
  • William A Talbot
  • Todd J McWhorter
  • Blair O Wolf
چکیده

Birds show phylogenetic variation in the relative importance of respiratory versus cutaneous evaporation, but the consequences for heat tolerance and evaporative cooling capacity remain unclear. We measured evaporative water loss (EWL), resting metabolic rate (RMR) and body temperature (Tb) in four arid-zone columbids from southern Africa [Namaqua dove (Oena capensis, ∼37 g), laughing dove (Spilopelia senegalensis, ∼89 g) and Cape turtle dove (Streptopelia capicola, ∼148 g)] and Australia [crested pigeon (Ocyphaps lophotes), ∼186 g] at air temperatures (Ta) of up to 62°C. There was no clear relationship between body mass and maximum Ta tolerated during acute heat exposure. Maximum Tb at very high Ta was 43.1±1.0, 43.7±0.8, 44.7±0.3 and 44.3±0.8°C in Namaqua doves, laughing doves, Cape turtle doves and crested pigeons, respectively. In all four species, RMR increased significantly at Ta above thermoneutrality, but the increases were relatively modest with RMR at Ta=56°C being 32, 60, 99 and 11% higher, respectively, than at Ta=35°C. At the highest Ta values reached, evaporative heat loss was equivalent to 466, 227, 230 and 275% of metabolic heat production. The maximum ratio of evaporative heat loss to metabolic production observed in Namaqua doves, 4.66, exceeds by a substantial margin previous values reported for birds. Our results support the notion that cutaneous evaporation provides a highly efficient mechanism of heat dissipation and an enhanced ability to tolerate extremely high Ta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell's sandgrouse (Pterocles burchelli).

Sandgrouse (Pterocliformes) are quintessential examples of avian adaptation to desert environments, but relatively little is known about the limits to their heat tolerance and evaporative cooling capacity. We predicted that evaporative cooling in Burchell's sandgrouse (Pterocles burchelli) is highly efficient and provides the basis for tolerance of very high air temperature (Ta). We measured bo...

متن کامل

Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines.

Many birds can defend body temperature (Tb) far below air temperature (Ta) during acute heat exposure, but relatively little is known about how avian heat tolerance and evaporative cooling capacity varies with body mass (Mb), phylogeny or ecological factors. We determined maximum rates of evaporative heat dissipation and thermal end points (Tb and Ta associated with thermoregulatory failure) in...

متن کامل

Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocep...

متن کامل

Evaluation of Evaporative Cooling for Heat Transfer in the Condenser of Window-Air Conditioners

There is a demand for reduced power consumption in the vapor compression refrigeration cycle. Coefficient of performance of window-air conditioners considerably decreases and power consumption increases under very hot conditions. These problems have encouragecl studies aimed at improving the performance of window-air-conditioners by enhancing the heat transfer rate in the condenser. In this ar...

متن کامل

Evaluation of Evaporative Cooling for Heat Transfer in the Condenser of Window-Air Conditioners

There is a demand for reduced power consumption in the vapor compression refrigeration cycle. Coefficient of performance of window-air conditioners considerably decreases and power consumption increases under very hot conditions. These problems have encouragecl studies aimed at improving the performance of window-air-conditioners by enhancing the heat transfer rate in the condenser. In this ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2016